Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A co
Prefabrication (PC) projects have many advantages, such as cost and energy savings and waste reduction. However, some problems still exist that hamper the development of prefabrication projects. To improve PC project performance and advance innovation in construction, this study introduces an innovative method that incorporates Radio Frequency Identification (RFID) and Long Range (LoRa) technologies, sensor networks, the BIM model and cloud computing to automatically collect, analyze and display real-time information about PC components. It can locate PC components on a construction site an
The purpose of this paper is to show the influence of incorrect scaffolding foundations on the stress in their elements. Static stress analysis was performed for exemplary steel façade scaffolding. The scaffolding was formed using the Plettac 70 system and was composed of 16 modules and 13 working levels. The total dimensions of the scaffolding were 45.0 × 26.36 × 0.74 m. The scaffolding was set up partly on concrete and partly on a created ground classified as coarse sand with discontinuous graining. The boundary conditions modelling the foundation considered the heterogeneity of the gr
There have been abundant experimental studies exploring ultra-high-performance concrete (UHPC) in recent years. However, the relationships between the engineering properties of UHPC and its mixture composition are highly nonlinear and difficult to delineate using traditional statistical methods. There is a need for robust and advanced methods that can streamline the diverse pertinent experimental data available to create predictive tools with superior accuracy and provide insight into its nonlinear materials science aspects. Machine learning is a powerful tool that can unravel underlying pa
A high temperature is produced in the process of precision milling of titanium alloy, and the cutting temperature can be effectively reduced by placing a micro-texture on the tool surface. In order to study the milling temperature of micro-textured ball-end milling cutter in milling titanium alloy under the combined action of a blunt radius with different edges and a micro-texture with different parameters, a new method based on micro-element theory and the generation and transmission of cutting heat has been established. At the same time, the influence of different radii of blunt edges on